User Manual for Tactical Language
Identification Software (U

DERA/CIS/CIS5/97472B/1.0




REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1997

3. REPORT TYPE AND DATES COVERED

Final Report

4. TITLE AND SUBTITLE

Tactical Language Identification

5. FUNDING NUMBERS

F6170896C0003

6. AUTHOR(S)

Dr. P. Nowell, Dr. D.A.Stevens

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION

REPORT NUMBER
Rutherford Appleton Lab
Chilton N/A
Didcot OX11 0QX
UK .

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
EOARD
PSC 802 BOX 14 SPC 96-4017
FPO 09499-0200
11. SUPPLEMENTARY NOTES

2 volumes - one is the final report and one is the User Manual for the Tactical Language Identification Software.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (Maximum 200 words)

This report results from a contract tasking Rutherford Appleton Lab describes work undertaken into the development of a tactical language
identification (TLID) system. Two distinct but complementary approaches have been taken. The first approach is based upon a vector
quantizer (VQ) classifier which is able to perform as a language identification system in its own right. The output from the vector quantizer is
also used as input for a sequence analysis component that attempts to extract additional structural information from the VQ sequences.
Experiments have been performed on the Oregon Graduate Institute (OG!) language identification corpus as well as on a second database
supplied by Rome Site. A substantial amount of effort has been devoted to optimizing the performance of the VQ classifier since this forms
the basis of all future work. The VQ results on the two databases show that the pre-processing that is applied to the speech signal is
important in determining the overall performance. Sequence analysis experiments show that it is also possible to extract additional VQ
sequencing information. Results obtained using the VQ show that the performance is highly dependent upon the initial pre-processing that is

applied to the speech signal and also to the size of the codebooks. In co

ntrast, the amount of test data which ranges from one second to 45

seconds, does not appear to have a significant effect on the overall results. This suggest that the VQ classifier is best suited to short test

utterances where there is little long term information.

14. SUBJECT TERMS

Physics

156. NUMBER OF PAGES
104

16. PRICE CODE
N/A

17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19, SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

298-102




Package Customer: Rome Laboratory

Package Manager: Dr. P. Nowell

Research Objective: Language Identification System
Assignment Number: E3NMWXXX

Date: 8™ December 1997

User Manual for Tactical Language
Identification Software (U)

DERA/CIS/CIS5/97472B/1.0

Cover + iii + 32 pages
8" December 1997

This document is subject to the release conditions printed on the reverse of this page.

DERA

UNCLASSIFIED
Customer Information
Package Title: Tactical Language Identification

Defence Evaluation

and Research Agency
Farnborough
Hampshire

GU14 61D

"ol DERA Is an Agency of the Ministry of Defence
"B QUALYTY INBPECTED 1 UNCLASSIFIED

AG Fqqg=0ol- 0047




UNCLASSIFIED

Release Conditions

This report has been prepared for Rome Laboratory and, except as indicated, may be used and
circulated under the arrangements of contract number:

CSM/6694

It may not, however, be used or copied for any non-Government or commercial purpose without
the written agreement of the Defence Evaluation and Research Agency.

© Crown Copyright (1997)
Defence Evaluation and Research Agency (DERA)
Farnborough, Hampshire, GU14 6TD, UK

Approval for copying should be sought from:-
DERA Intellectual Property Department
Tel: 01252 392616

UNCLASSIFIED




o -

UNCLASSIFIED

Authorisation

Prepared by: Dr. P. Nowell

Title: Project M ager
Signature: / Zﬁ

Reviewed by:  Dr. R. Series
Title: Project Quality Monitor

Signature: /%’—é.

Authorised by:  Dr. P. Nowell

Title: roject Mafiager
Signature: ﬁ

Date: @/v | 417,
Principal Authors

Name: Dr P. Nowell
Appointment: Project Manager
Location: DERA Malvern
Telephone: 01684 896268
Name: Dr D. A. Stevens
Appointment: Researcher
Location: DERA Malvern
Telephone: 01684 894103

Issued by: Dr. P. Nowell
Defence Evaluation and Research Agency (DERA)
St Andrews Road
Malvern
Worcestershire, WR14 3PS.
Telephone 01684-894000.

DERA/CIS/CIS5/97472B/1.0
UNCLASSIFIED




UNCLASSIFIED

Record of changes

This is a controlled document.
Additional copies should be obtained through the issuing authority.
In the event of copying locally, each document shall be marked ‘Uncontrolled Copy’

Amendment shall be by whole document replacement. |

Proposals for change should be forwarded to the issuing authority.

1.0 8" December 1997 | First Release

i DERA/CIS/CIS5/97472B/1.0
UNCLASSIFIED




UNCLASSIFIED

List of contents

Authorisation i
Record of changes ii
1 Introduction 1
1.1 Contractual MALETS ...cuivceiririienierirernrssirsnesnsestssessereesesessesessssessesessssessesessesesseressesesssssssassssessssassosass 1
2 Vector Quantiser User Manual 3
2.1 INTOAUCTHION covveuetririsiiictracitsericttrassaeseseseesnssesessessesesesestasesesestssssesessssessnnasssssssessesensasssssersesens 3
2.2 External data TEQUITEMENLS .....cuiuiuiiieriuereireenereueeeesseseesessesesesessssesesessesesssssssssasssssssesessesenssssssssssssens 3
2.3 EXECULING thE SCIIPLS cuevvueuiuiieriuisisieeeresesiisieseetsessesesetssesesessssssesessssssssessssesessssssasessssesssnsssessosssens 3
2.4 Changing the CONMIO]l PATAMELETS.......cccevrereereruerererierueessesestaesessessssessesessessssessesesssssssessessssasessesess 4
2.5 VQUEAINLPEIL.ucviiiritiiiicinirisncinenresesesestesestssessesestssestesessssessesassssssssssssstssessesessnsssssssssssssessessnns 5
2.6 VQLESEPEIL .ccuririiriiiruinsinicssisuenrenteesresessessesassessessesessassessessessessessssessessessessessestessessessessessosassssssssenss 6
2.7 GENSEG.PEIL ittt sestsssne et sesessestsssssessssssesnsstsesnesesssssssesasassestesansssassens 7
2.8 CB3 EXECULADIE w.uviriririireiisiisiesisennitinneesessessasenssnsessessssssnessssesessesessesessessasesessessssessasensesersesessns 8
2.9 MCB €XECULADIE c...cuvirriritiriieinistissisisieesissssesesesessnessesessessesssssssessssssssesssssessassasaessesssssssserassessenses 10
3 Sequence Analysis User Manual 11
3.1 INMPOQUCHION c.uvireinrcvieetetstestesececetesteeseesesanesesessseseseassssnestasessassassessessassessestesseseesssssssessessessesasnnes 11
3.2 External data TEQUITEIMENLS......cciiuiririisnieruenreesseererersessneseosesssssessesessssssessesessessessessasssssensesassessanses 11
3.3 EXECULING thE SCIIPLS ..coereiruiruriritiiniiniinietiieesneneesessessessesssesesessessessesseseassssessassassssssnsessssasssnaes 12
3.4 Changing the CONrol PATAMELETS.......ccveruiririeniirueruererierieresensnesnesesssessesessesessessessessessesesseesessesassaes 13
3.5 tHATCD wertivitiristieecirenteceeee sttt st se s s e et saesne e s e et s et esesaastseeaensstereaereraeseneneresaanne 15
3.6 ANALYSC.ICP ucueuirirircerresiserierercststeassenisnnesssnsnesesesesestesessesesessesesestassssststasesssssesesesssssasasessesesarasaenas 16
3.7 CIUSIET.TCD wecveurireninissisisrinsteessistssessssesesssstesssssesesssssssessstesesessnssssassessssessssssnsesseseressessesensssssesssnens 17
3.8 COUNLICP .cuviuinriniiinceiniesisessiessatsssstsssssnsstsenssnssesessssesessssestsssssssensessssssestessssssensensssenssssssasesssennens 18
3.0 ASITEC.TCP. 1 evueerrisurcrresersunesesssseseossessesssosessssssessssstessassessessasssassassasssersessssssessesssessessaessessessssssessossssnsons 19
310 SCIECLICD . ceutiiririniinniincietitssessssetstestenssesasensessssesetssessaseseesestessssssestesasasasessnsessesensasersrnesssenee 20
3.1 ClaSSIEY.ICP ittt sesaees s s se et s e sassastesessere e sbe s sre s esaraebennebeaesasasnernessnsenen 21
312 SCOTE.ICP wuerirrnerersessessnssesuesesssasessessesnssessnestsssssssssessssessansessasssssssessansessessessesessensesesnessssessansessons 22
3.13 COMIMOTLATES tveeureesseenessessesssesesssesessrnessosnessassesssesenssassanssessassssssassessesssessessesssassesssossessessssssessenne 23
4 Adapting to new data / languages 25
4.1 Vector qUantiSer COMPONENL.......cceucrrivreceressesiesessnesssassesssesesssssasessessassesnessessessesessessessessesssssesssssnns 25
4.2 Sequence analysis COMPONENL.....ccceirrirereriiisisissisisisisresssesessesesesestssessssscssesessssssssssssesssssssseseneres 25
5 File Locations 27
Initial distribution list 29
Report documentation page 30
DERA/CIS/CIS5/97472B/1.0 iii

UNCLASSIFIED




UNCLASSIFIED

THIS PAGE INTENTIONALLY BLANK

DERA/CIS/CIS5/97472B/1.0
UNCLASSIFIED




UNCLASSIFIED

1 Introduction

1.1 Contractual matters

1.1.1  This report has been issued by Dr. P. Nowell for Rome Laboratory under contract
CSM/6694

1.1.2 The report is split into two parts which mirror the major components of the tactical
language identification (TLID) software. The first part covers the vector quantiser software
whereas the second part covers the sequence analysis software. Further details of the
algorithms used and their application to the problem of tactical language identification can
be found in the report ‘Dr P. Nowell and Dr D. A. Stevens, Final Report on Tactical
Language Identification (U), DERA/CIS/CIS5/CR/97472A/1.0, Dec. 1997°.

1.1.3  The manual briefly outlines the external data requirements, gives instructions for executing
the top level scripts and lists the major control parameters. Further usage instructions are
given for the major scripts and executables. Section two contains the user manual for the
vector quantiser component of the tactical language identification software. The user
manual for the sequence analysis is contained in section three and follows the same format.

1.1.4  Sections four provides additional information that may be useful in adapting the scripts to
new data and/or languages. Finally, section 5 describes the file structure for the installed
software.

DRA/CIS/CIS5/CR/97472B/1.0 1
UNCLASSIFIED




UNCLASSIFIED

THIS PAGE INTENTIONALLY BLANK

DRA/CIS/CISS/CR/97472B/1.0
UNCLASSIFIED




UNCLASSIFIED

2 Vector Quantiser User Manual

2.1 Introduction

2.1.1  This section details the use of the vector quantiser (VQ) based TLID software. Details
include descriptions of how to use the three scripts for training and testing of the data as
well as for sequence generation as required by the sequence analysis software (see section
3). The guide also includes details of the executables that are at the core of all the VQ
scripts.

2.2 External data requirements

2.2.1  The external data requirements for the VQ component of the TLID software are listed
below.

1. Speechlist files (pairwise list of speech data and annotation files)
2. Speech data files (as listed in the speechlist file)

3. Annotation files (as listed in the speechlist file)

4. Pre-processor definition file  (e.g. ppfiles/mfc16+dc+DcS5.pp)

2.2.2  The speechlist files are text files containing a pairwise list of the speech data and
annotation files that are used for training or testing.

2.2.3  The speech data files are binary files containing a spectrogram type representation of the
speech data. The first 512 bytes of each file constitutes a header (see appendix A) which
describes amongst other things the frame rate and vector size.

2.2.4  The annotation files are also binary files and have a similar format to the speech data files
(see appendix A). Annotation files are used to specify sub-regions within each speech file
that are to be used for training or testing '

2.3 Executing the scripts

2.3.1  The training process is controlled by a single script (VQtrain.perl) which is used
repeatedly to generate a codebook model for each target language.

2.3.2  Once the language specific codebooks have been generated the VQ language classifier is
tested using the script VOtest . perl. The program generates an output file containing
the scores assigned to each test utterance by each codebook.

2.3.3 A third script (GenSeq.perl) is used to generate the sequence files used by the sequence
analysis software (see section 3). The script uses the codebooks generated by
VQtrain.perl to convert a series of speech data files into sequence files.

DRA/CIS/CIS5/CR/97472B/1.0 3

UNCLASSIFIED




24

24.1

2.4.2

243

244

2.4.5

UNCLASSIFIED

Changing the control parameters

A number of control parameters are embedded with the training and testing scripts as
described below. In addition the two main executables (CB3 and MCB, see sections 2.8
and 2.9 for details) have a number of parameters that can be adjusted to change the training
and testing of the vector codebook models.

The major parameters for the training script VQtrain.perl are as follows :-

$MinBkSize Minimum codebook size to generate
$MaxBkSize Maximum codebook size to generate
$TheTrainProg Full pathname of cb3 executable
$TheLanguage Unique language identifier

$exptDir Main root directory for current experiment
$TheSpeechList Full pathname of the speechlist file
$ThePreProc Full pathname of the pre-processor definition file

The parameters $MinBkSize and $MaxBkSize are self explanatory in that they are the
upper and lower limits of the codebook sizes to generate while training. The main root
directory $exptDir is the directory where the scripts are held, together with all the sub-
directories containing the codebook model files. For any set of experiments where training
and testing is used, the $exptDir will generally remain the same for all training and
testing scripts. The $TheTrainProg, $TheSpeechList and $ThePreProc are
described in section on external data requirements (section 2.2).

The test script VQtest . perl has a similar set of parameters :-

$TheTestProg Full pathname of mcb executable

$exptDir Main root directory for current experiment
$TheSpeechList Full pathname of the speechlist file
$ThePreProc Full pathname of the pre-processor definition file
$CBList Full pathname of the codebook list file.

The $exptDir and $ThePreProc parameters listed above should be identical to those
listed in the VQtrain.perl script. The $STheSpeechList and $CBList parameters
should point to the lists which identify which files to test and which codebook models to
test them with.

DRA/CIS/CIS5/CR/97472B/1.0
UNCLASSIFIED




UNCLASSIFIED

25 VQtrain.perl

For each language a separate version of this script is required. In general all the parameters will
remain identical except for the $TheLanguage setting within the script. It is common practice to
generate several scripts with the name VQtrain_${TheLanguage}.perl to identify which
script has generated which language model. For example the script for generating the English model
is called VQtrain_english.perl.

Usage:
VQtrain__${TheLanguage}.perl
Input File(s):

The script requires that the speechlist, speech data files, annotation files and pre-processor file have
already been generated (see section 2.2).

Intermediate File(s):

None

Output File(s):

The script generates separate codebook files in the directory codebooks/$TheLanguage for
each codebook in the range $MinBkSize to $MaxBkSize. The files are named where $size is
a zero padded number of states in the codebook. Consequently for a script which trains the English
language with $MinBkSize set to 4 and $MaxBkSize set to 16 there are 3 output files, namely:

english.bk.0004, english.bk.0008 and english.bk.0016.

$exptDir/codebooks/$ThelLanguage/$Language.bk.S$size

£ DRA/CIS/CIS5/CR/97472B/1.0 5
h UNCLASSIFIED
|




UNCLASSIFIED

2.6 VQtest.perl

The test script for the VQ based language identification system requires that the VQtrain.perl
script has been used to generate a set of codebooks for a set of languages.

Usage:
VQtest.perl
Input File(s):

The test script requires speechlists, speech data files and annotation files in the same format as that
used by the training script.

In addition a codebook list file specifies a list of codebook files and directories such that each line in
the codebook list becomes a full pathname description of one of the language specific codebooks
when prefixed by the directory codebooks. E.g for a sixteen element English codebook the entry
would be :-

english/english.bk.0016
Intermediate File(s):
None
Output File(s):

The output file is contained in the $exptDir/results directory and is given the name
results.$size where $size is the number of states used in the codebooks. Le. the results are

written to :-
SexptDir/results/results.$size

The results file contains a list with three space separated columns. The columns are, in order: the
speech data file used in the test; the codebook file against which it has been tested; the score
obtained with the given speech file and codebook file. Thus for each speech data listed in the speech
list file N lines are generated in the results file where N is the number of codebooks listed in the
codebook list file. For each test file the N entries are ordered in preference such that the most likely
language is the first of the N entries and the least likely codebook is the last entry for that test file.

6 DRA/CIS/CIS5/CR/97472B/1.0
UNCLASSIFIED




UNCLASSIFIED

2.7 GenSeq.perl

GenSeq.perl is used to generated the VQ labelled training and test data for the sequence analysis
component of the TLID system (see section 3).

Usage:
GenSeq.perl
Input File(s):

The test script requires speechlists, speech data files and annotation files in the same format as that
used by the training script.

In addition a codebook list file specifies a list of codebook files and directories such that each line in
the codebook list becomes a full pathname description of one of the language specific codebooks
when prefixed by $exptDir/codebooks. E.g for a sixteen element English codebook the entry
would be :-

english/english.bk.0016

Intermediate File(s):

None

Output File(s):

The output from this script is in the form of sequence files, N per input file as listed in the speechlist
file, where N is the number of codebooks listed in the codebook list file. For each speech file in the
speechlist a series of sequence files are generated with the same name as the original speech file
except that the filename ends in .seq. Le

$exptDir/sequences/<codebook_name>/<speech_filename>.seq

The sequence file is a text file of space separated state identifiers with a state number output per
frame of input data and each state number being preceded by the letter ‘s’ as a further separator.

DRA/CIS/CISS/CR/97472B/1.0 7
UNCLASSIFIED




2.8

2.8.1

2.8.2

2.8.3

2.8.4

UNCLASSIFIED

CB3 executable

The CB3 executable is designed for both training and testing of a codebook model against
a set of speech files as listed in the speechlist file. The options available upon running the
CB3 program are as follows together with their default values:

train=+ Train(+) or test(-) mode, valid arguments +,-.
speechlist= Speech list file name.

preproc= Pre-processor definition file name

cbfname= Codebook file name (input if testing, output if training)
distfile= Output distance filename (debugging)

segfile= Output sequence file name descriptor

occ=+ State occupancy flag for calculating distances
minBk=1 Minimum codebook size to generate (power of 2)
maxBk=32 Maximum codebook size to generate (power of 2)
variance=- Variance terms flag for the codebook model
fullcovar=- Full covariance flag for the codebook model
globv=- Global variance flag for the codebook model
min_occ=10 Minimum number of frames per state before splitting
min_var=1e-06 Hard limit on the minimum variance allowable
min_it=10 Minimum number of iterations per codebook size
max_it=30 Maximum number of iterations per codebook size
converge=0.0001 Convergence value

conv_it=3 No. of frames over which convergence is calculated
pmag=le-06 Perturbation magnification for splitting states
verbose=- Verbose flag (used for debugging)

Within the scripts which use the CB3 program the majority of the default settings are kept.
However it is possible to alter the scripts in order to allow different codebook structures or
different training conditions. Only one of the three parameters variance, globv and
fullcovar may be set to positive although ail of them may be set to negative to obtain a
system which does not use variance terms at all as in the early OGI experiments [Nowell
and Stevens 1997].

The occ= term is used to include the prior probability of a state occurring in the distance
calculation. Any given state will occur a number of times during the training data and as
such it is possible to calculate likelihood of this state occurring for a given language and
used in the distance measure.

For the seqfile= parameter the string sequence %s will be replaced by the input speech
file name header such that by setting seqfile=<dir>/%s.seq it is possible to direct
the program to put all the sequence files in <dir> directory, with the same name as the
respective speech file in the speech list except for the ending which is replaced by . seq.

DRA/CIS/CISS/CR/97472B/1.0
UNCLASSIFIED




UNCLASSIFIED

2.8.5 The distfile= parameter is identical to the seqfile= parameter except for the format
of the file output. The distance file contains information regarding the distance on a per
frame basis with one frame per line.

DRA/CIS/CIS5/CR/97472B/1.0 9
UNCLASSIFIED




2.9

29.1

29.2

293

10

UNCLASSIFIED

MCB executable

While it is possible to use the CB3 program for testing a file against several codebooks it
would be necessary to run the CB program separately for each codebook in turn. The MCB
executable is a simple test program which uses many of the same routines as the CB3
program but is able to load multiple codebook files at a time.

cb_dir= Codebook root directory
cblist= Codebook list file
speechlist= Speech list file

preproc= Pre-processor definition file
results= Results output file name
verbose=- Verbose flag (used for debugging)

The filenames listed in the cblist file are appended to the base directory as defined by
the cb_dir parameter to give the full path name for each codebook model required. The
speechlist and preproc parameters are used to indicate which speech list file and
pre-processor file to use as in the CB3 program. The results parameter is location and
filename of the output results file.

All parameters regarding the codebook structure are unnecessary as they are contained
within the codebook file itself and are set up when the file are read in. This is also true for
the CB3 program when used in test mode.

DRA/CIS/CIS5/CR/97472B/1.0
UNCLASSIFIED




3.2

3.2.1

322

323

324

UNCLASSIFIED

Sequence Analysis User Manual

Introduction

This section of the report contains the user manual for the sequence analysis component of
the tactical language identification (TLID) system. Before any of this software can be used
it is first necessary to build the VQ codebooks and then quantise the training and test data.
Instructions for doing this are contained in the user manual for the vector quantiser [section
2].

External data requirements

The sequence analysis component of the TLID system builds upon the output of the vector
quantiser. It is therefore necessary to first create a suitable quantiser, vector quantise the
training and test data and then copy (or create links to) this data in the directory VQdata.
The following data needs to be transferred :-

1. Pre-processor definition file  (e.g. ppfiles/mfc16+dc+Dc5.pp)

Vector quantiser codebooks  (e.g. Expts8c/codebooks/english/ english.bk.0128.Z)
Vector quantised sequences (e.g. sequences/english.bk.0128/en003stb.seq.Z)
Distance matrix (e.g. english.dmat2.0128.Z)

. Training speechlists (e.g. train_dev_english.tsl)

. Test speechlists (e.g. test45_dev_english.tsl)

. Speech data (e.g. /cdrom/dft/en003stb.dft)

N s W

The pre-processor definition file is a text file which describes the various pre-processing
stages that are applied to the speech data. These stages will typically include the calculation
of the mean power, cosine coefficients and deltas thereof. For further details of the various
pre-processors that have been used and their effects on the performance of the vector
quantiser see [Nowell and Stevens 1997].

The vector quantiser codebooks are trained on the parameterised speech data. Each
codebook has a number of entries (e.g. 128) with means and variances representing
prototypical speech vectors. The sequence analysis software requires two codebooks, the
first larger codebook is used to model the speech key-fragments and the second smaller
codebook (in these experiments containing just 2 entries) is used as a babble model for the
non key-fragment speech. The codebooks are stored as compressed files in order to save
disk space. '

The sequences/english.bk. 0128/ directory contains the vector quantised training
data generated using the larger of the two English codebooks. These files will be processed
by the sequence analysis software in order to extract acoustically similar sub-sequences
which can then be used by the language classifier.

DRA/CIS/CIS5/CR/97472B/1.0 11

UNCLASSIFIED




325

326

3.2.7

3.3

3.3.1

33.2

333

334

335

12

UNCLASSIFIED

The distance matrix file contains pre-computed distances reflecting the acoustic similarity
of the codebook entries in relation to one another and the smaller babble codebook.

The training and test speechlists contain a list of the speech files that should be used for
training and testing. The training data is split into development and evaluation' sub-sets
with separate speechlists for each sub-set and language. Likewise, the test data is also split
into language specific development and evaluation sub-sets. In addition separate
speechlists are used for test files either approximately 45 seconds or 15 seconds long.

Finally the raw speech data needs to be on-line. This data can require considerable amounts
of disk storage space so, in the case of OGI, the data files for each language are stored on
separate CD-ROMs which are accessible over the network. The text file
‘files/drives.txt’ contains a mapping between the language name and the
machine which holds the CD-ROM for that language.

Executing the scripts

The training and testing process is controlled by a single top-level script (t1id.rcp)
which in turn calls a number of sub-scripts and executables as required for training and
testing. To train and test a classifier for the target language ‘<language>’ this script is
executed using simply:

tlid.rcp <language>

This script initialises various variables and then goes on to call several sub-scripts which in
turn implement the various stages involved in training, testing and scoring the language
classifier.

During training the following sub-scripts are used

1 analyse.rcp
2 cluster.rcp
3.  countrcp

4 select.rcp

and the following are used during testing.

1. count.rcp
2. classify.rcp
3. score.rcp

The first sub-script analyse.rcp is responsible for extracting similar sub-sequences
from the vector quantised training data. These sub-sequences are then clustered by
cluster.rcp which collects together similar sub-sequences representing the same or
similar underlying sounds. Occurrences of each cluster centroid are then counted in the
training data by count.rcp and these counts are used by select.rcp to calculate

DRA/CIS/CIS5/CR/97472B/1.0
UNCLASSIFIED




34

3.4.1

34.2

343

3.4.4

UNCLASSIFIED

‘usefulness’ scores and determine the most discriminative sub-sequences. During testing
occurrences of the most discriminative sub-sequences are counted in the test data again
using count.rcp. The occurrence counts and associated ‘usefulness’ scores of each
fragment are accumulated and the total used by classify. rcp to classify the individual
test files. Finally, the classified test files are scored using score.rcp and the output is
presented as a list of false alarm rates and probability of detection for a range of detection
thresholds.

Changing the control parameters

There are a number of parameters which can be changed in order to modify the behaviour
of the sequence analysis software. Most of these are now contained in a single file
‘scripts/common.args’ which has comments describing their purpose.

Attheend of t1id.rcp there is a command

$score $basedir Starget -4000 250 1000

This command runs the scoring script with a range of threshold values ranging from -4000
to 1000 in increments of 250. In order to generate reasonable ROC plots it is necessary to
obtain a reasonable number of data points ranging from 0% to 100% false alarms and true
detections. This can be achieved by varying the threshold and increment values until the
appropriate points are generated. In practice the training and testing scripts are run through
to completion for each language and the command

scripts/score.rcp . <language> <start> <increment> <end>

is repeatedly executed in the experiment directory.

DRA/CIS/CIS5/CR/97472B/1.0 13

UNCLASSIFIED




14

UNCLASSIFIED

THIS PAGE INTENTIONALLY BLANK

UNCLASSIFIED

DRA/CIS/CIS5/CR/97472B/1.0




UNCLASSIFIED

3.5 tlid.rcp

A single top-level script (t1id. rcp) is used to train and evaluate a classifier for each language of
interest. This script is called as

Usage:

tlid.rcp <target> - Target language (e.g. English)
Input files

None

Intermediate files

See description of component shell scripts

Ooutput files

None

<target> is the target language (e.g. german, farsi etc). This script calls a number of other scripts
in turn to carry out the various stages involved in training and evaluating the language classifier.
These stages and their control scripts are described in order of processing.

DRA/CIS/CIS5/CR/97472B/1.0 15
UNCLASSIFIED




UNCLASSIFIED

3.6 analyse.rcp

The first sub-script scripts/analyse.rcp is used to analyse the training speech data files
and locate similar sub-sequences (i.e. similar, re-occurring sounds). For the purposes of language
identification one would want these sub-sequences to represent phonemes, word fragments (prefixes
and suffixes) and possibly entire words ( yes, ja etc).

Usage:

analyse.rcp <target> - Target language (e.g. English)
<codesize> - Codebook size (e.g. 0128)
<trainlist> - File containing list of training files
<similarity> - Similarity threshold

Input File(s):

The script requires that the training speech data has been vector quantised (i.e. converted to a
symbol stream). The argument <trainlist> gives the name of the file which contains the list of
vector quantised training files.

A pre-computed distance matrix is also required for determining the self-similar regions.

Intermediate Files(s):

The processing of each input file leads to the production of an output file (extension .pms)
containing a list of partial matches.

$exptdir/train/$basename.pms

The contents of each file are clustered (using cluster.rcp) in order to group together similar
partial matches, the clusters are stored as intermediate files.

$exptdir/train/$basename.cls
Output File(s):

The output is a set of files containing a list of similar sub-sequences that were found in the input VQ
sequence files.

Sexptdir/train/$basename.cen

These sub-sequences are actually the centroids (i.e. most representative examples) of the clustered
partial matches.

16 DRA/CIS/CIS5/CR/97472B/1.0
UNCLASSIFIED




UNCLASSIFIED

3.7  cluster.rcp

The partial match files generated by analyse.rcp typically contain multiple entries for the same
underlying sound due to repetitions of the sound in the training file(s). It is necessary to cluster these
multiple entries in order to determine a single representative sequence for each sound.
Cluster.rcp is called from analyse.rcp to cluster the partial matches within each training file
and then again from t1id. rcp to re-cluster the centroids of the clustered training files.

The two stage clustering process is significantly quicker than simply concatenating and clustering
the partial matches in all the training files. The end result will be similar provided that the same (or
similar) centroids are generated with sufficient frequency in the training data. This assumption will
almost certainly be true for any fragments that are likely to be ‘useful’ since these will occur often
and in most training files.

Usage:

cluster.rcp <options> - Additional options
<target> - Target language (e.g. english)
<codebook> - Codebook size (e.g. 0128)
<fragments> - Input file containing fragments
<similarity> - Similarity threshold
<limit> - Minimum cluster size
<output> - Output file

Input File(s):

The input consists of a text file (<fragments>) containing the fragments to be clustered and a
distance matrix ($ codebook) containing pre-computed inter-state similarity scores.

Intermediate Files(s):
~ None
Output File(s):

The output is a text file (extension .cls) which contains the individual clusters. The first
fragment in each cluster is the centroid (i.e. most representative example) of that cluster.

DRA/CIS/CIS5/CR/97472B/1.0 17
UNCLASSIFIED




UNCLASSIFIED

3.8 countrcp

Count.rcp is basically a pre-processor for astrec.rcp which actually uses the continuous
speech recogniser (which we call astrec) to count the fragment occurrences in the training or test
speech.

This shell script generates the necessary control files to configure the speech recogniser to be an
acoustic fragment spotter. These include single state babble and fragment models derived from the
VQ codebooks, a pronunciation dictionary mapping fragment strings to the appropriate sequence of
single state models and syntax files allowing the recognition of acoustic fragments interspersed with
‘babble’.

A detailed description of the recogniser configuration files is beyond the scope of this report.

Usage:

count.rcp <target> - Target language (e.g. english)
<codebook> - Codebook size (e.g. 0128)
<speechlist> - List of vQ’d speech files
<fragments> - Fragments to be counted

Input File(s):

The input consists of the feature and babble codebooks, top-level recogniser syntax file
(files/main.non), a list of fragments to be counted and a file containing a mapping from
language to CD-ROM drive containing the corresponding speech data.

Intermediate Files(s):
None
Output File(s):

Recogniser configuration files, the syntax and semantics of these files are beyond the scope of this
report.

18 DRA/CIS/CIS5/CR/97472B/1.0
UNCLASSIFIED




- Ve s T e W e T

UNCLASSIFIED

3.9  astrec.rcp

Astrec.rcp is a wrapper which provides the arguments for the speech recognition software. The
script first generates a speechlist, using the target language to identify the machine which contains
the speech data and thereby the full pathname of each input file. The location of the speechlist and
various configuration files are then simply passed on to the recognition software. The output from
the recogniser is converted into the format expected by subsequent stages. This involves converting
each recogniser . res file into a . cnt file containing a count reflecting the duration of the file (in
this case the number of VQ symbols) followed by a count of the number of occurrences of each
fragment.

Usage:

astrec.rcp <target> - Target language (e.g. english)
<codebook> - Codebook size (e.g. 0128)
<speechlist> - List of VvQ’d speech files
<fragments> - Fragments to be counted

Input File(s):

The input includes the configuration files generated by the previous script (count . rcp) as well as
the main speechlist file which lists the set of training or test files.

Intermediate Files(s):

Thle script generates a speechlist for the recogniser which lists the location of each speech file.
Separate recognition output files (extension . res) are also generated for each input file and these
are stored in the directory $dstdir. Each file consists of a table containing five columns. The first
two columns give the starting and ending frames (where the frame rate is typically 100 frames per
second) in the speech signal where the fragment was spotted. The third and fourth columns give the
negative log. likelihood score of the detected fragment followed by the average score per frame.
Finally, the last column identifies the fragment that was spotted, the number refers to the ranking of
the fragment in the input file $fragments which contains the list of extracted VQ sequence
fragments.

Output File(s):
The output is a set of count files (extension .cnt) which, for each recognition results file, contains

a count of the total number of VQ symbols in that file (i.e. a measure of the file length) followed by
occurrence counts for each fragment in turn.

DRA/CIS/CIS5/CR/97472B/1.0 19
UNCLASSIFIED




UNCLASSIFIED

3.10 select.rcp

Select.rcp uses the .cnt files generated by count . rep and astrec. rcp to rank and select a
subset of the most discriminative fragments. The individual counts for each training file are
gathered together and used to generate an intermediate file which contains the total number of
occurrences of each fragment per language. The values in this file are used to compute
discriminative ‘usefulness’ scores for each of the fragments. A ranked listing of the fragments and
their scores are written to the output file.

Usage:

select.rcp <target> - Target language (e.g. english)
<fragments> - Fragments set to select from
<index> - Mapping from fragments to counts
<mode> - Selection mode (usefulness etc.)
<selection> - File to store selection

Input File(s):

The input consists of a list of fragments, another list also containing a list of fragments which is
used to map the values in the count (. cnt) files back onto the original VQ sub-sequence and finally
the directory containing the list of . cnt files.

Intermediate Files(s):

The individual .cnt files are combined into a single file which gives the accumulated counts for
each language in turn. The file $tmpdir/ccounts.tmp consists of a list of languages to be
classified, the estimated length of the language specific training data and the number of occurrences
of each fragment in each language. These counts are obtained by simply accumulating the counts
from the individual training files.

Output File(s):

The output is a single file containing the fragments ranked by their discriminative usefulness scores.
The first column is the frequency weighted score which is then followed by the incremental score
and finally the VQ sub-sequence to which the scores relate.

20 DRA/CIS/CIS5/CR/97472B/1.0
UNCLASSIFIED




UNCLASSIFIED

3.11 classify.rcp

Classify.rcp is used to classify the . res files according to target language. The input to the process
consists of the . cnt files generated by counting occurrences of the selected fragments in the test
data and the file containing the list of selected fragments with their discriminative usefulness scores.

The occurrence counts in each .cnt file are normalised by the length of the file and then used
along with the incremental ‘usefulness’ scores to calculate the total score for each file. The output is
a file containing the scores for each test file.

Usage:

classify.rcp <target> - Target language (e.g. english)
<speechlist> - List of test files
<selection> - Selected fragments
<output> - Language classifications

Input File(s):

The input files consist of a speechlist which gives the location of the test files and from which the
location of the . cnt files can be determined. A separate file, generated by select . rcp, contains
the list of fragments and their associated usefulness scores.

Intermediate Files(s):

None

Output File(s):

The output is a single file which, for each test file, lists the correct language classification, the

filename and the accumulated usefulness score. This score should be large when the test file belongs
to the target language and small or negative otherwise.

DRA/CIS/CIS5/CR/97472B/1.0 21
UNCLASSIFIED




UNCLASSIFIED

3.12 score.rcp

Usage:

Score. rcp takes the output file generated by classify.rcp and calculates the probability of
detection and probability of false alarm for a range of detection thresholds (the actual calculations
are actually performed by a perl script). The starting threshold, increment and final threshold value
are supplied as arguments. It is often necessary to manually run the scoring script with a variety of
different arguments. The data points for the ROC plots displayed previously were generated by
manually adjusting the parameters so as to give twenty data points over the range of the plot.

score.rcp <target> - Target language (e.g. english)
<minthreshold> - Initial threshold wvalue
<increment> - Threshold increment
<maxthreshold> - Final threshold value

Input File(s):

Classification file produced by classify.rcp
Intermediate Files(s):

None

Output File(s):

None, the results are written directly to the display.

22 DRA/CIS/CIS5/CR/97472B/1.0
UNCLASSIFIED




UNCLASSIFIED

3.13 common.args

Usage:

Common.args is used as a contained for common variables and definitions that are used by a
number of other scripts, it is not called in it’s own right.

The script defines values for the datatype of the VQ speech files, locations of the VQ symbol set
and distance matrix, the DP deletion insertion substitution penalties and the similarity threshold
used for the detecting partial matches and clustering.

Input File(s):

None

Intermediate Files(s):

None

Output File(s):

None

DRA/CIS/CIS5/CR/97472B/1.0 23
UNCLASSIFIED




24

UNCLASSIFIED

THIS PAGE INTENTIONALLY BLANK

UNCLASSIFIED

DRA/CIS/CIS5/CR/97472B/1.0



4.1.2

4.2

4.2.1

422

423

42.4

UNCLASSIFIED

Adapting to new data / languages

Vector quantiser component

The main process in adapting to new data and/or languages lies in the generation of new
speech data and annotation files. The speech data files contain a spectrogram type
representation of the speech signal and can be generated using either a filterbank or fast
fourier transform (FFT) algorithm. The annotation files indicate regions of the speech data
files that are to be used for training or testing.

Additionally, speechlist files will have to be generated which give the locations of the
speech data and annotation files. These files are simple text files which can be most easily
generated by modifying existing files such as those included with the installation.

Sequence analysis component

In theory changing the training and test data should require little or no changes to the
individual scripts. The codebooks will need to be generated, the speech data vector
quantised and then the corresponding files copied to the directory VQdata as described in
section 3.2. :

At the head of t1id. rcp there is a string containing the set of languages in the training
and test data. If the new set differs from that used for OGI (i.e. english, farsi, french,
german, japanese, korean, mandarin, spanish, tamil and vietnamese) then this string will
need to be changed.

The text file ‘files/drives.txt’ contains a mapping between each language and
the name of the machine holding the CD-ROM with the speech data for that language.
Again, if the language set differs from OGI then this file will need updating.

It may also be necessary to optimise the various parameters for the new data set, these
parameters are described in section 3.4.

DRA/CIS/CIS5/CR/97472B/1.0 25

UNCLASSIFIED




26

UNCLASSIFIED

THIS PAGE INTENTIONALLY BLANK

UNCLASSIFIED

DRA/CIS/CISS5/CR/97472B/1.0



UNCLASSIFED

File Locations

5 File Locations

The following file-structure shows the location of various files relative to the top-level directory in
which the files are installed. Any changes to this file structure will be recorded in the file README
file in the top-level directory.

VQodata/ - Contains data from VQ training
codebooks/ - Contains VQ codebooks
english/ - Contains english codebooks
english.bk.0002.2 - Compressed 2 entry codebook
english.bk.0128.2 - Compressed 128 entry codebook
ppfiles/ - Contains recogniser pre-processor files
sequences/ - Contains vector quantised training data
english.bk.0128/ - Output from 128 element VQ codebook
speechlists/ - Contain training and test set lists
train_dev_<language>.tsl - Development training data
test45_dev_<language>.tsl - 45 second development test
testl0_dev_<language>.tsl - 10 second development test

test45_eval_<language>.tsl - 45 second evaluation test
testl0_eval_<language>.tsl - 10 second evaluation test

bin/ - Contains various executables
astrec_2.4.3 - Continuous speech recogniser
cb2hmm - Converts codebook to HMM
ccount_1.0.1 - Collects observation counts

choose_1.0.6
dpcluster_1.0.2
expand_1.0.0

Selects most ‘Useful’ fragments
Clusters similar fragments

Expands observation counts
file2file_1.0.3 Sequence analysis software
gproc_1.0.0 Generates recogniser syntax files
modgen_1.0.0 - Generates recogniser vocabulary file
uscore_1.0.2 Calculate ‘Usefulness’ scores

1

files/ - Contains various pre-prepared files
main.non - Recogniser syntax file
babble.pre - Recogniser syntax file
drives.txt - Location of CDs
DERA/CIS/CIS5/97472B/1.0 Page 27

UNCLASSIFIED




results/
<language>/
train/
test/
tmp/
scripts/

src/

test/

Page 28

analyse.rcp
astrec.rcp
ccounts.rcp
classify.rcp
cluster.rcp
common.args
countl.rcp
gensplist.prl
score.rcp
sed.cmd
select.rcp

UNCLASSIFIED

File Locations

- Contains experimental results

Target language (e.g. english)
Output from training phase
Output from test phase
Miscellaneous files

- Contains shell and perl scripts

Extract potentially useful fragments
Count fragment occurrences
Accumulate occurrence counts
Classify test data

Cluster similar fragments

Common arguments

Count fragment occurrences
Generate speechlist for recogniser
Iterates threshold

Commands for ‘sed’

Select most ‘useful’ fragments

- Contains source files

rlabs/
expand. cpp

gproc.cpp
modgen . cpp

Source developed for Rome Lab.
Expands observation counts
- Generates recogniser syntax files
- Generates recogniser vocabulary file

- Contains example results

english/
train/
test/
tmp/

Target language (english)
Output from training phase
Output from test phase
Miscellaneous files

DERA/CIS/CIS5/97472B/1.0
UNCLASSIFIED




A.l.1

Binary File Headers

UNCLASSIFIED

The vector quantiser software operates on binary speech data and annotation files which

will need to be generated if the software is to be used on new data. Each binary data file
has a header which describes the data that follows. The header is identified by the
characters ‘SRUHEADO’ and contains a number of fields as shown below.

A.1.2

char ident[8];

int32
int32
int32
int32
int32
int32
int32
float
float
float
float
int32
int32
int32
int32
int32
int32
int32

byt_per_frame;

- header identifier
- Number of bytes per frame

file_type; - File type

data_type; - Data type

res_len; - Not used

data_len; - Length of data
samplerate; - Sampling rate
downsample; - Downsample rate
max_val; - Maximum data value
max_scale; - Maximum data scale
min_val; - Minimum data wvalue
min_scale; - Minimum data value
no_coms; - Number of comments
com_len; - Length of comments
ex_head_len; - Length of extra data
pad_len; - Length of padding data
offset; - Offset relative to signal file
machine; - machine formats flag
reserved; - reserved

The meanings of those fields that are important for subsequent software and typical values

for speech data and annotation files are given in appendices A.1 and A.2.

A.2 Typical speech data file header

A.2.1 The following represents a typical header from a speech data file :-

identifier

byte per frame

file type
data type
data len

samplerate

downsampled

offset
max_val
max_scale
min_val
min_scale

number of comments

comment length

extra header length

padding length

architecture bits

DRA/CIS/CIS5/CR/97472B/1.0

SRUHEADO

80

4 (filter bank log/transformed)
11 (SRUbank coded log powers)

398240
8000
-80

0

-1.000000

1.000000

1.000000
1.000000
4

176

0

256

0x311 (DECstation,little-endian,IEEE float 32)

29
UNCLASSIFIED




A2.2

A23

A24

UNCLASSIFIED

It can be seen from the header that the data in this file consists of log. filterbank
coefficients (filetype 4), and the coefficients are stored as unsigned characters scaled in
0.5dB steps (data type 11). The original speech was sampled at 8kHz but the frame rate of
the coefficients is 100Hz hence the value of the downsampled field. The total size of the
filterbank coefficients is 398240 bytes (this corresponds to 4978 frames and 62.2 seconds
of speech).

There are four comments (not displayed) which are contained in 176 bytes following the
header and there is no extra header information . In order for the total size of the header
and comments to be a multiple of 512 bytes it was necessary to append 356 padding
characters.

The remaining fields such as maximum and minimum values are not used at present and
were not computed.

A.3 Typical annotation file header

A.3.1 The following represents a typical annotation file header :-

identifier SRUHEADO

byte per frame 76

file type 12 (annotation)

data type 22 (Sentence annotation)
data len 2660

samplerate 19980

downsampled -1

offset 0

max_val 3546.000000

max_scale 1.000000

min_val 94.000000

min_scale 1.000000

number of comments 6

comment length 268

extra header length 224

padding length 452

architecture bits 0x12 (presumed VAX,little-endian,VAX float 32)

A32 The header shows that this file contains annotation data (file type 12) at the sentence level
(data type 22). The annotation data is stored in fixed width ‘frames’ which in this case are
76 bytes long. The total data length is 2660 bytes corresponding to 35 annotations. The
signal data was sampled at 19.98 kHz and the ‘start’ and ‘end’ values of the annotation tags
also refer to the same sampling rate (downsampled = -1).

A.3.3 The remaining fields are as described for the previous header. Each annotation tag is
stored as two 32 bit integers for the start and end points followed by annotation text. The
total length of the integers and text should equal byt_per_frame.

30 DRA/CIS/CIS5/CR/97472B/1.0

UNCLASSIFIED




UNCLASSIFIED

Initial distribution list

Name Organisation
John Parker Rome Laboratory / IRAA
Jim Cupples 32 Hangar Road

Rome, NY 13441-4114

Dr. M.F. Levy Signal Science Limited
5 Hutchcombe Farm Close
Oxford, OX2 9HG

Audrey James SRU Librarian
DERA Malvern
Worcs, WR14 3PS

DERA/CIS/CIS5/97472B/1.0
UNCLASSIFIED

Copy

3.4

5-8

Page 31




UNCLASSIFIED

Report documentation page

Originator’s report number: DERA/CIS/CIS5/97472B/1.0
Originator’s name and location: Issued by Dr. P. Nowell.
Defence Evaluation and Research Agency, St Andrews Road, Malvern, Worcestershire, WR14 3PS.
Telephone 01684-894000. -

Contract and period covered: CSM / 6694, [1996-1997]
Customer: Rome Laboratory

Report protective marking and descriptor: UNCLASSIFIED

) Date of issue: December 1997

Number of pages: Cover + iii + 32 pages

Number of references: 0 Reference(s)

Title: User Manual for Tactical Language Identification Software
Translation/conference details: None ‘

Title classification: Unclassified

Author(s): Dr P. Nowell and Dr D. A. Stevens

Key words: Tactical Language Identification, User Manual

Page 32 DERA/CIS/CIS5/97472B/1.0
UNCLASSIFIED




